

Rapid tests for MRSA detection at the hospital admission

Olivier Denis

Reference Laboratory for Staphylococci and MRSA ULB-Hôpital Erasme

SYMPOSIUM 12th November 2009

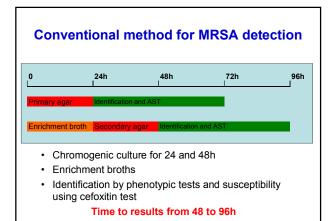
Prevention strategies for MRSA control Complementary strategies

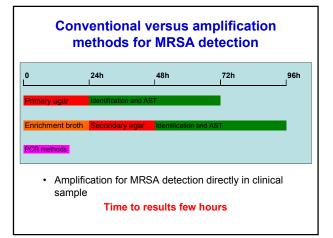
- · Early identification of MRSA carriers Active screening
- Reduction of MRSA carriage
 - Decontamination with mupirocin and antiseptic body washing
- Stop transmission - Improved compliance with hand hygiene - Contact isolation of MRSA positive patients
- Reduction of antibiotic use

- Education and restriction Harbarth S. CMI 2006 12:1142

Rationale for MRSA screening

- Colonized patients constitute the main reservoir for nosocomial transmission
- Colonized patients are only detected by active surveillance sampling of muco-cutaneous swabs
- Hospitalized patients carrying MRSA are at high risk to develop a MRSA infection
- High mortality (RR 1.9 vs MSSA, RR > 10 vs no infection) and prolonged hospital stay (2-13 days) is associated with MRSA infections


⇒ MRSA screening for patients at high-risk of MRSA carriage and/or in high risk wards (ICU, hematology, ...)


Potential benefits for rapid **MRSA** identification

- Patient care
 - Early appropriate treatment with improve clinical outcome
 - Reduced empirical use of glycopeptides

Infection control

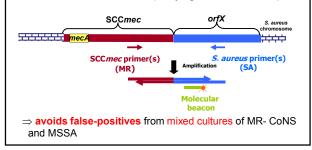
- Early MRSA isolation/cohorting
- Decrease in nosocomial transmission rate
- Decrease in MRSA morbidity and mortality
- Cost saving
 - Shorter patient stay
 Fewer preventive isolation days
 Lower medical liability costs

Amplification methods for rapid MRSA detection

First generation

- In-house or commercial PCR
- Target for S. aureus : e.g. nuc, femA, coa
- Target for methicillin-resistance : mecA

High risk of MRSA positive results with mixed


flora MR-CoNS and MSSA

etter get get get get Positive control Megative control meck gene detector nuc gene detector

Amplification methods for rapid MRSA detection

Second generation

 Detection of the junction between orfX (S. aureus) and SCCmec element (carrying MR determinant)

Commercial assays

• BD GeneOhm[™] MRSA Assay (IDI-MRSA PCR)

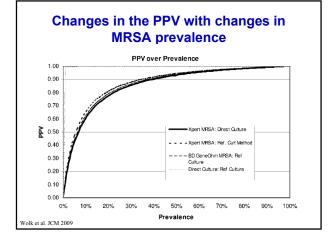
- Manual procedure
 - Specimen preparation and concentration
 - Lysis and DNA extraction
 - · Reconstitution of reagents
- Real-time multiplex PCR on Smart-Cycler
 - \Rightarrow Full process run time 2 hours

Commercial assays

• Xpert[™] MRSA (Cepheid)

- DNA extraction and real-time PCR combined
- Random access
- 75 min assay

Performance of automated systems for **MRSA** detection in screening samples Sensitivity 85 - 98%


– Nare > other sites

- False negatives
- Inhibition (rare)
 - · New variants of SCCmec elements
 - · Low inoculum limit of detection

Specificity 96 – 98%

- False positives
 - Partial deletion of SCCmec element including mecA
 - Non viable bacteria patient under treatment
 - Low inoculum limit of detection
 - Risk of MRSA infection not different from that in patients with PCR and culture negative
- Low positive predictive value in hospitals with low prevalence Shore et al. AAC 2008 De San et al. JCM 2007 Herdman et al. JCM 2009

Bartels et al. JCM 2009

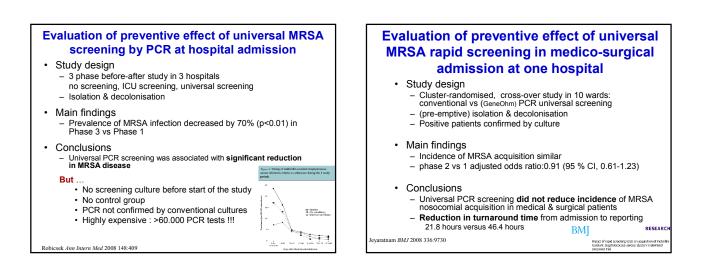
						colonizatio MRSA cul		,					
PCR assay result (n = 210)	Agar alone							Agar and/or broth					
	No. of specimens		Sensitivity	Specificity			No. of specimens		Sensitivity	Specificity		-	
	Culture positive	Culture negative	(%)	(%)	PPV (%)	NPV (%)	Culture positive	Culture negative	(%)	(%)	PPV (%)	NPV (%)	
GXP-MRSA Positive Negative Unresolved ^b	${}^{40^e}_{6^{d,f}}$	$10 \\ 152^{c} \\ 2$	87.0	93.8	80.0	96.2	42^{8} $14^{d_{sh}}$ 0	8 144 ^c 2	75.0	94.7	84.0	91.1	
BD-MRSA Positive Negative Unresolved	39 ⁱ 7 ^j 0	12 152 0	84.8	92.7	76.5	95.6	41^{k} 15' 0	10 144 0	73.2	93.5	80.4	90.6	

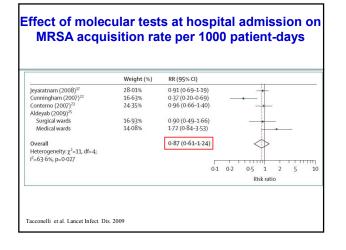
Kelley et al. JCM 2009

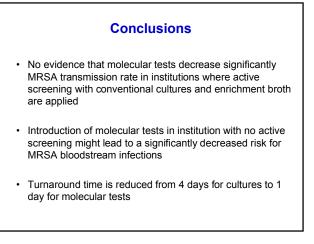
				mmerc screen		
Methods	TAT hours	Limit of detection CFU/ml*	Costs	Trained personnel	Core lab	Workload
Chromogenic agars	24-48	170	+	No	No	++
Enrichment broth	48-96	10	+	No	No	++
BD GeneOhm MRSA	2.5	190	+++	Yes	No	+
GeneXpert MRSA	<1.5	60	++++	No	Yes	+/-
		turnaround tii		¥.		

		ning at hosp udies with Ger		
Authors	Setting	Intervention	Culture	Outcome
Cunningham UK - 10M	2 phases Mixed ICU	Univer. screening Decolonization Contact precaution	Yes	\downarrow MRSA transmission
Robicsek USA - 3Ys1/2	3 phases Baseline, ICU, all admissions	Univer. screening Decolonization Isolation	No	\downarrow MRSA infection
Jog UK – 1Y	Cardiac surgery	Univer. screening Decolonization	No	↓ MRSA infection (SSI, bacteraemia)
Aldeyab UK	Medical and surgical wards	Decolonization Contact precaution	Yes	No difference
<mark>Keshtgar</mark> UK – 1 Y	Surgical wards	Univer. screening Decolonization	No	↓ S. aureus bacteraemia and MRSA SSI
Conterno Canada – 1Y	1200-bed hospital	High risk patients Contact precaution	Yes	No difference ↓ TAT

Main limits of published studies using rapid
MRSA detection methods for infection control


Methodological problems


Systematic screenings not performed at discharge or at follow-up •


- No measure of the rate of nosocomial transmission

- PCR results not confirmed by conventional cultures
 Risk of "overshooting" (PPV << 75 %)
- Lack of control group

 No analysis of possible variation in MRSA epidemiology during the study period
- Absence of monitoring of the adherence to infection control procedures
 decolonization, isolation and hand hygiene

- High heterogeneity related to different study designs, study population and hospital settings
- Need for robust studies in different clinical settings for

 Which patient groups could benefit most from screening at
 admission
 - Clinical efficacy, effectiveness and cost-benefit
- Current technologies remain labor intensive and dependent of skilled personnel
- Optimal use requires changes in healthcare systems and modification of professional behaviors toward patient care and infection control